| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reuhyp | GIF version | ||
| Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.) |
| Ref | Expression |
|---|---|
| reuhyp.1 | ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) |
| reuhyp.2 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
| Ref | Expression |
|---|---|
| reuhyp | ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1288 | . 2 ⊢ ⊤ | |
| 2 | reuhyp.1 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) | |
| 3 | 2 | adantl 271 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) |
| 4 | reuhyp.2 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | |
| 5 | 4 | 3adant1 956 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
| 6 | 3, 5 | reuhypd 4221 | . 2 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| 7 | 1, 6 | mpan 414 | 1 ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ⊤wtru 1285 ∈ wcel 1433 ∃!wreu 2350 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-reu 2355 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |