![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reupick2 | GIF version |
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
reupick2 | ⊢ (((∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 𝜓 ∧ ∃!𝑥 ∈ 𝐴 𝜑) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancr 314 | . . . . . 6 ⊢ ((𝜓 → 𝜑) → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | 1 | ralimi 2426 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) → ∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓))) |
3 | rexim 2455 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓)) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
5 | reupick3 3249 | . . . . . 6 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) | |
6 | 5 | 3exp 1137 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)))) |
7 | 6 | com12 30 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∃!𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)))) |
8 | 4, 7 | syl6 33 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) → (∃𝑥 ∈ 𝐴 𝜓 → (∃!𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → (𝜑 → 𝜓))))) |
9 | 8 | 3imp1 1151 | . 2 ⊢ (((∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 𝜓 ∧ ∃!𝑥 ∈ 𝐴 𝜑) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) |
10 | rsp 2411 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) → (𝑥 ∈ 𝐴 → (𝜓 → 𝜑))) | |
11 | 10 | 3ad2ant1 959 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 𝜓 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝑥 ∈ 𝐴 → (𝜓 → 𝜑))) |
12 | 11 | imp 122 | . 2 ⊢ (((∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 𝜓 ∧ ∃!𝑥 ∈ 𝐴 𝜑) ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜑)) |
13 | 9, 12 | impbid 127 | 1 ⊢ (((∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 𝜓 ∧ ∃!𝑥 ∈ 𝐴 𝜑) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 919 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 ∃!wreu 2350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-ral 2353 df-rex 2354 df-reu 2355 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |