ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrot4 GIF version

Theorem rexrot4 2520
Description: Rotate existential restricted quantifiers twice. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexrot4 (∃𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐵,𝑧   𝑥,𝑤,𝑦,𝐶   𝑥,𝑧,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑧)   𝐷(𝑤)

Proof of Theorem rexrot4
StepHypRef Expression
1 rexcom13 2519 . . 3 (∃𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑤𝐷𝑧𝐶𝑦𝐵 𝜑)
21rexbii 2373 . 2 (∃𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑥𝐴𝑤𝐷𝑧𝐶𝑦𝐵 𝜑)
3 rexcom13 2519 . 2 (∃𝑥𝐴𝑤𝐷𝑧𝐶𝑦𝐵 𝜑 ↔ ∃𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑)
42, 3bitri 182 1 (∃𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 103  wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator