![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rintm | GIF version |
Description: Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
rintm | ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3158 | . 2 ⊢ (𝐴 ∩ ∩ 𝑋) = (∩ 𝑋 ∩ 𝐴) | |
2 | intssuni2m 3660 | . . . 4 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∩ 𝑋 ⊆ ∪ 𝒫 𝐴) | |
3 | ssid 3018 | . . . . 5 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐴 | |
4 | sspwuni 3760 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝐴) | |
5 | 3, 4 | mpbi 143 | . . . 4 ⊢ ∪ 𝒫 𝐴 ⊆ 𝐴 |
6 | 2, 5 | syl6ss 3011 | . . 3 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∩ 𝑋 ⊆ 𝐴) |
7 | df-ss 2986 | . . 3 ⊢ (∩ 𝑋 ⊆ 𝐴 ↔ (∩ 𝑋 ∩ 𝐴) = ∩ 𝑋) | |
8 | 6, 7 | sylib 120 | . 2 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (∩ 𝑋 ∩ 𝐴) = ∩ 𝑋) |
9 | 1, 8 | syl5eq 2125 | 1 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ∩ cin 2972 ⊆ wss 2973 𝒫 cpw 3382 ∪ cuni 3601 ∩ cint 3636 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-uni 3602 df-int 3637 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |