ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmobiia GIF version

Theorem rmobiia 2543
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rmobiia (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)

Proof of Theorem rmobiia
StepHypRef Expression
1 rmobiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
21pm5.32i 441 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32mobii 1978 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑥(𝑥𝐴𝜓))
4 df-rmo 2356 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
5 df-rmo 2356 . 2 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
63, 4, 53bitr4i 210 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433  ∃*wmo 1942  ∃*wrmo 2351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-eu 1944  df-mo 1945  df-rmo 2356
This theorem is referenced by:  rmobii  2544
  Copyright terms: Public domain W3C validator