| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp2e | GIF version | ||
| Description: Restricted specialization. (Contributed by FL, 4-Jun-2012.) |
| Ref | Expression |
|---|---|
| rsp2e | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 938 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝑥 ∈ 𝐴) | |
| 2 | rspe 2412 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | 2 | 3adant1 956 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) |
| 4 | 19.8a 1522 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | |
| 5 | 1, 3, 4 | syl2anc 403 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
| 6 | df-rex 2354 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | |
| 7 | 5, 6 | sylibr 132 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 919 ∃wex 1421 ∈ wcel 1433 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-rex 2354 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |