ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rzal GIF version

Theorem rzal 3338
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rzal (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rzal
StepHypRef Expression
1 ne0i 3257 . . . 4 (𝑥𝐴𝐴 ≠ ∅)
21necon2bi 2300 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴)
32pm2.21d 581 . 2 (𝐴 = ∅ → (𝑥𝐴𝜑))
43ralrimiv 2433 1 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  wral 2348  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-v 2603  df-dif 2975  df-nul 3252
This theorem is referenced by:  ralf0  3344
  Copyright terms: Public domain W3C validator