ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbbidh GIF version

Theorem sbbidh 1766
Description: Deduction substituting both sides of a biconditional. New proofs should use sbbid 1767 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbbidh.1 (𝜑 → ∀𝑥𝜑)
sbbidh.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbbidh (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))

Proof of Theorem sbbidh
StepHypRef Expression
1 sbbidh.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 sbbidh.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimih 1398 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 spsbbi 1765 . 2 (∀𝑥(𝜓𝜒) → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
53, 4syl 14 1 (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282  [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-sb 1686
This theorem is referenced by:  sbcomxyyz  1887
  Copyright terms: Public domain W3C validator