ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3 GIF version

Theorem sbco3 1889
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbco3 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)

Proof of Theorem sbco3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbco3xzyz 1888 . . 3 ([𝑤 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑥 / 𝑦]𝜑)
21sbbii 1688 . 2 ([𝑧 / 𝑤][𝑤 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑤][𝑤 / 𝑥][𝑥 / 𝑦]𝜑)
3 ax-17 1459 . . 3 ([𝑦 / 𝑥]𝜑 → ∀𝑤[𝑦 / 𝑥]𝜑)
43sbco2h 1879 . 2 ([𝑧 / 𝑤][𝑤 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
5 ax-17 1459 . . 3 ([𝑥 / 𝑦]𝜑 → ∀𝑤[𝑥 / 𝑦]𝜑)
65sbco2h 1879 . 2 ([𝑧 / 𝑤][𝑤 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
72, 4, 63bitr3i 208 1 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 103  [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by:  sbcom  1890
  Copyright terms: Public domain W3C validator