| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcocom | GIF version | ||
| Description: Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbcocom | ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb1 1708 | . . 3 ⊢ [𝑧 / 𝑦]𝑦 = 𝑧 | |
| 2 | sbequ 1761 | . . . 4 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 3 | 2 | sbimi 1687 | . . 3 ⊢ ([𝑧 / 𝑦]𝑦 = 𝑧 → [𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 4 | 1, 3 | ax-mp 7 | . 2 ⊢ [𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 5 | sbbi 1874 | . 2 ⊢ ([𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) ↔ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)) | |
| 6 | 4, 5 | mpbi 143 | 1 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sbcomv 1886 sbco3xzyz 1888 sbcom 1890 |
| Copyright terms: Public domain | W3C validator |