| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbi1v | GIF version | ||
| Description: Forward direction of sbimv 1814. (Contributed by Jim Kingdon, 25-Dec-2017.) |
| Ref | Expression |
|---|---|
| sbi1v | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 1807 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | sb6 1807 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) | |
| 3 | ax-2 6 | . . . . 5 ⊢ ((𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓))) | |
| 4 | 3 | al2imi 1387 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
| 5 | sb2 1690 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) → [𝑦 / 𝑥]𝜓) | |
| 6 | 4, 5 | syl6 33 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜓)) |
| 7 | 2, 6 | sylbi 119 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜓)) |
| 8 | 1, 7 | syl5bi 150 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: sbimv 1814 |
| Copyright terms: Public domain | W3C validator |