| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbied | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1714). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbied.1 | ⊢ Ⅎ𝑥𝜑 |
| sbied.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| sbied.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| sbied | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbied.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1452 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | sbied.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 3 | nfrd 1453 | . 2 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| 5 | sbied.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | 2, 4, 5 | sbiedh 1710 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 Ⅎwnf 1389 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sbiedv 1712 dvelimdf 1933 cbvrald 10598 |
| Copyright terms: Public domain | W3C validator |