![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbss | GIF version |
Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
sbss | ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . 2 ⊢ 𝑦 ∈ V | |
2 | sbequ 1761 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ⊆ 𝐴)) | |
3 | sseq1 3020 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
4 | nfv 1461 | . . 3 ⊢ Ⅎ𝑥 𝑧 ⊆ 𝐴 | |
5 | sseq1 3020 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | |
6 | 4, 5 | sbie 1714 | . 2 ⊢ ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴) |
7 | 1, 2, 3, 6 | vtoclb 2656 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 [wsb 1685 ⊆ wss 2973 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 df-in 2979 df-ss 2986 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |