Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  setindf GIF version

Theorem setindf 10761
Description: Axiom of set-induction with a DV condition replaced with a non-freeness hypothesis (Contributed by BJ, 22-Nov-2019.)
Hypothesis
Ref Expression
setindf.nf 𝑦𝜑
Assertion
Ref Expression
setindf (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem setindf
StepHypRef Expression
1 setindft 10760 . 2 (∀𝑥𝑦𝜑 → (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑))
2 setindf.nf . 2 𝑦𝜑
31, 2mpg 1380 1 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1282  wnf 1389  [wsb 1685  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-ral 2353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator