![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > setindf | GIF version |
Description: Axiom of set-induction with a DV condition replaced with a non-freeness hypothesis (Contributed by BJ, 22-Nov-2019.) |
Ref | Expression |
---|---|
setindf.nf | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
setindf | ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setindft 10760 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) | |
2 | setindf.nf | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | 1, 2 | mpg 1380 | 1 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 [wsb 1685 ∀wral 2348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-setind 4280 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-ral 2353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |