![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simplbiim | GIF version |
Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
simplbiim.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
simplbiim.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simplbiim | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbiim.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | simplbiim.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | 2 | adantl 271 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
4 | 1, 3 | sylbi 119 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: zltaddlt1le 9028 oddnn02np1 10280 |
Copyright terms: Public domain | W3C validator |