![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oddnn02np1 | GIF version |
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.) |
Ref | Expression |
---|---|
oddnn02np1 | ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2141 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
2 | elnn0z 8364 | . . . . . . . . 9 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 ↔ (((2 · 𝑛) + 1) ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1))) | |
3 | 2tnp1ge0ge0 9303 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) ↔ 0 ≤ 𝑛)) | |
4 | 3 | biimpd 142 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (0 ≤ ((2 · 𝑛) + 1) → 0 ≤ 𝑛)) |
5 | 4 | imdistani 433 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℤ ∧ 0 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) |
6 | 5 | expcom 114 | . . . . . . . . . 10 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))) |
7 | elnn0z 8364 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) | |
8 | 6, 7 | syl6ibr 160 | . . . . . . . . 9 ⊢ (0 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
9 | 2, 8 | simplbiim 379 | . . . . . . . 8 ⊢ (((2 · 𝑛) + 1) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
10 | 1, 9 | syl6bir 162 | . . . . . . 7 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))) |
11 | 10 | com13 79 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0))) |
12 | 11 | impcom 123 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ0)) |
13 | 12 | pm4.71rd 386 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
14 | 13 | bicomd 139 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁)) |
15 | 14 | rexbidva 2365 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
16 | nn0ssz 8369 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
17 | rexss 3061 | . . 3 ⊢ (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) | |
18 | 16, 17 | mp1i 10 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ ((2 · 𝑛) + 1) = 𝑁))) |
19 | nn0z 8371 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
20 | odd2np1 10272 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) |
22 | 15, 18, 21 | 3bitr4rd 219 | 1 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃wrex 2349 ⊆ wss 2973 class class class wbr 3785 (class class class)co 5532 0cc0 6981 1c1 6982 + caddc 6984 · cmul 6986 ≤ cle 7154 2c2 8089 ℕ0cn0 8288 ℤcz 8351 ∥ cdvds 10195 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-xor 1307 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-n0 8289 df-z 8352 df-dvds 10196 |
This theorem is referenced by: oddge22np1 10281 |
Copyright terms: Public domain | W3C validator |