| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > speiv | GIF version | ||
| Description: Inference from existential specialization, using implicit substitition. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| speiv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| speiv.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| speiv | ⊢ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | speiv.2 | . 2 ⊢ 𝜓 | |
| 2 | speiv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimprd 156 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 4 | 3 | spimev 1782 | . 2 ⊢ (𝜓 → ∃𝑥𝜑) |
| 5 | 1, 4 | ax-mp 7 | 1 ⊢ ∃𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |