| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spimed | GIF version | ||
| Description: Deduction version of spime 1669. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| spimed.1 | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| spimed.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimed | ⊢ (𝜒 → (𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spimed.1 | . . 3 ⊢ (𝜒 → Ⅎ𝑥𝜑) | |
| 2 | 1 | nfrd 1453 | . 2 ⊢ (𝜒 → (𝜑 → ∀𝑥𝜑)) |
| 3 | a9e 1626 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 4 | spimed.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | eximii 1533 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
| 6 | 5 | 19.35i 1556 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| 7 | 2, 6 | syl6 33 | 1 ⊢ (𝜒 → (𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: spime 1669 |
| Copyright terms: Public domain | W3C validator |