ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssindif0im GIF version

Theorem ssindif0im 3303
Description: Subclass implies empty intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0im (𝐴𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅)

Proof of Theorem ssindif0im
StepHypRef Expression
1 ddifss 3202 . . 3 𝐵 ⊆ (V ∖ (V ∖ 𝐵))
2 sstr 3007 . . 3 ((𝐴𝐵𝐵 ⊆ (V ∖ (V ∖ 𝐵))) → 𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
31, 2mpan2 415 . 2 (𝐴𝐵𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
4 disj2 3299 . 2 ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
53, 4sylibr 132 1 (𝐴𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  Vcvv 2601  cdif 2970  cin 2972  wss 2973  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator