| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq1d | GIF version | ||
| Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| supeq1d | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | supeq1 6399 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 supcsup 6395 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-uni 3602 df-sup 6397 |
| This theorem is referenced by: supminfex 8685 minmax 10112 gcdval 10351 gcdass 10404 |
| Copyright terms: Public domain | W3C validator |