![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2an2r | GIF version |
Description: syl2anr 284 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2r.1 | ⊢ (𝜑 → 𝜓) |
syl2an2r.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
syl2an2r.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2r | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2r.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an2r.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
3 | syl2an2r.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 1, 2, 3 | syl2an 283 | . 2 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
5 | 4 | anabss5 542 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: op1stbg 4228 supelti 6415 supmaxti 6417 infminti 6440 divalglemnqt 10320 lcmid 10462 |
Copyright terms: Public domain | W3C validator |