ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stbg GIF version

Theorem op1stbg 4228
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
op1stbg ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)

Proof of Theorem op1stbg
StepHypRef Expression
1 dfopg 3568 . . . . 5 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
21inteqd 3641 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
3 snexg 3956 . . . . . 6 (𝐴𝑉 → {𝐴} ∈ V)
4 prexg 3966 . . . . . 6 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
5 intprg 3669 . . . . . 6 (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
63, 4, 5syl2an2r 559 . . . . 5 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
7 snsspr1 3533 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
8 df-ss 2986 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
97, 8mpbi 143 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
106, 9syl6eq 2129 . . . 4 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = {𝐴})
112, 10eqtrd 2113 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
1211inteqd 3641 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
13 intsng 3670 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
1413adantr 270 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} = 𝐴)
1512, 14eqtrd 2113 1 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  Vcvv 2601  cin 2972  wss 2973  {csn 3398  {cpr 3399  cop 3401   cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-int 3637
This theorem is referenced by:  elxp5  4829  fundmen  6309
  Copyright terms: Public domain W3C validator