![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5rbbr | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl5rbbr.1 | ⊢ (𝜓 ↔ 𝜑) |
syl5rbbr.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5rbbr | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 130 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | syl5rbbr.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | syl5rbb 191 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: xordc 1323 sbal2 1939 eqsnm 3547 fnressn 5370 fressnfv 5371 eluniimadm 5425 genpassl 6714 genpassu 6715 1idprl 6780 1idpru 6781 axcaucvglemres 7065 negeq0 7362 muleqadd 7758 crap0 8035 addltmul 8267 fzrev 9101 modq0 9331 cjap0 9794 cjne0 9795 caucvgrelemrec 9865 lenegsq 9981 dvdsabseq 10247 elabgf0 10587 |
Copyright terms: Public domain | W3C validator |