![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbal2 | GIF version |
Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
sbal2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 1407 | . . 3 ⊢ (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑)) | |
2 | hbnae 1649 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) | |
3 | dveeq1 1936 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | |
4 | 3 | alimi 1384 | . . . . . 6 ⊢ (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
5 | 4 | hbnaes 1651 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
6 | 19.21ht 1513 | . . . . 5 ⊢ (∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧) → (∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑))) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑))) |
8 | 2, 7 | albidh 1409 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))) |
9 | 1, 8 | syl5rbbr 193 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑))) |
10 | sb6 1807 | . 2 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)) | |
11 | sb6 1807 | . . 3 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜑)) | |
12 | 11 | albii 1399 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑)) |
13 | 9, 10, 12 | 3bitr4g 221 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∀wal 1282 [wsb 1685 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |