ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9ss GIF version

Theorem sylan9ss 3012
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypotheses
Ref Expression
sylan9ss.1 (𝜑𝐴𝐵)
sylan9ss.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ss ((𝜑𝜓) → 𝐴𝐶)

Proof of Theorem sylan9ss
StepHypRef Expression
1 sylan9ss.1 . 2 (𝜑𝐴𝐵)
2 sylan9ss.2 . 2 (𝜓𝐵𝐶)
3 sstr 3007 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2an 283 1 ((𝜑𝜓) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986
This theorem is referenced by:  sylan9ssr  3013  unss12  3144  ss2in  3193  relrelss  4864  funssxp  5080
  Copyright terms: Public domain W3C validator