| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trubifal | GIF version | ||
| Description: A ↔ identity. (Contributed by David A. Wheeler, 23-Feb-2018.) |
| Ref | Expression |
|---|---|
| trubifal | ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 380 | . 2 ⊢ ((⊤ ↔ ⊥) ↔ ((⊤ → ⊥) ∧ (⊥ → ⊤))) | |
| 2 | truimfal 1341 | . . 3 ⊢ ((⊤ → ⊥) ↔ ⊥) | |
| 3 | falimtru 1342 | . . 3 ⊢ ((⊥ → ⊤) ↔ ⊤) | |
| 4 | 2, 3 | anbi12i 447 | . 2 ⊢ (((⊤ → ⊥) ∧ (⊥ → ⊤)) ↔ (⊥ ∧ ⊤)) |
| 5 | falantru 1334 | . 2 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | |
| 6 | 1, 4, 5 | 3bitri 204 | 1 ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ⊤wtru 1285 ⊥wfal 1289 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
| This theorem is referenced by: falbitru 1348 |
| Copyright terms: Public domain | W3C validator |