| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > falantru | GIF version | ||
| Description: A ∧ identity. (Contributed by David A. Wheeler, 23-Feb-2018.) |
| Ref | Expression |
|---|---|
| falantru | ⊢ ((⊥ ∧ ⊤) ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 | . 2 ⊢ ((⊥ ∧ ⊤) → ⊥) | |
| 2 | falim 1298 | . 2 ⊢ (⊥ → (⊥ ∧ ⊤)) | |
| 3 | 1, 2 | impbii 124 | 1 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ⊤wtru 1285 ⊥wfal 1289 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
| This theorem is referenced by: trubifal 1347 falxortru 1352 falxorfal 1353 |
| Copyright terms: Public domain | W3C validator |