| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unimax | GIF version | ||
| Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| unimax | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3018 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | sseq1 3020 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
| 3 | 2 | elrab3 2750 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ 𝐴 ⊆ 𝐴)) |
| 4 | 1, 3 | mpbiri 166 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) |
| 5 | sseq1 3020 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 6 | 5 | elrab 2749 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴)) |
| 7 | 6 | simprbi 269 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ 𝐴) |
| 8 | 7 | rgen 2416 | . 2 ⊢ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴 |
| 9 | ssunieq 3634 | . . 3 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) | |
| 10 | 9 | eqcomd 2086 | . 2 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| 11 | 4, 8, 10 | sylancl 404 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∀wral 2348 {crab 2352 ⊆ wss 2973 ∪ cuni 3601 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 |
| This theorem is referenced by: onuniss2 4256 |
| Copyright terms: Public domain | W3C validator |