![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vn0m | GIF version |
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.) |
Ref | Expression |
---|---|
vn0m | ⊢ ∃𝑥 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . 2 ⊢ 𝑥 ∈ V | |
2 | 19.8a 1522 | . 2 ⊢ (𝑥 ∈ V → ∃𝑥 𝑥 ∈ V) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ ∃𝑥 𝑥 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∃wex 1421 ∈ wcel 1433 Vcvv 2601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
This theorem is referenced by: relrelss 4864 |
Copyright terms: Public domain | W3C validator |