ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m GIF version

Theorem vn0m 3259
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m 𝑥 𝑥 ∈ V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2604 . 2 𝑥 ∈ V
2 19.8a 1522 . 2 (𝑥 ∈ V → ∃𝑥 𝑥 ∈ V)
31, 2ax-mp 7 1 𝑥 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wex 1421  wcel 1433  Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-v 2603
This theorem is referenced by:  relrelss  4864
  Copyright terms: Public domain W3C validator