| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xornbidc | GIF version | ||
| Description: Exclusive or is equivalent to negated biconditional for decidable propositions. (Contributed by Jim Kingdon, 27-Apr-2018.) |
| Ref | Expression |
|---|---|
| xornbidc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor2dc 1321 | . . . 4 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))))) | |
| 2 | 1 | imp 122 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)))) |
| 3 | df-xor 1307 | . . 3 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
| 4 | 2, 3 | syl6rbbr 197 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓))) |
| 5 | 4 | ex 113 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 DECID wdc 775 ⊻ wxo 1306 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-xor 1307 |
| This theorem is referenced by: xordc 1323 xordidc 1330 |
| Copyright terms: Public domain | W3C validator |