MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.2g Structured version   Visualization version   Unicode version

Theorem 19.2g 2058
Description: Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. Use 19.2 1892 when sufficient. (Contributed by Mel L. O'Cat, 31-Mar-2008.)
Assertion
Ref Expression
19.2g  |-  ( A. x ph  ->  E. y ph )

Proof of Theorem 19.2g
StepHypRef Expression
1 19.8a 2052 . 2  |-  ( ph  ->  E. y ph )
21sps 2055 1  |-  ( A. x ph  ->  E. y ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator