MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.32 Structured version   Visualization version   Unicode version

Theorem 19.32 2101
Description: Theorem 19.32 of [Margaris] p. 90. See 19.32v 1869 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.32.1  |-  F/ x ph
Assertion
Ref Expression
19.32  |-  ( A. x ( ph  \/  ps )  <->  ( ph  \/  A. x ps ) )

Proof of Theorem 19.32
StepHypRef Expression
1 19.32.1 . . . 4  |-  F/ x ph
21nfn 1784 . . 3  |-  F/ x  -.  ph
3219.21 2075 . 2  |-  ( A. x ( -.  ph  ->  ps )  <->  ( -.  ph 
->  A. x ps )
)
4 df-or 385 . . 3  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
54albii 1747 . 2  |-  ( A. x ( ph  \/  ps )  <->  A. x ( -. 
ph  ->  ps ) )
6 df-or 385 . 2  |-  ( (
ph  \/  A. x ps )  <->  ( -.  ph  ->  A. x ps )
)
73, 5, 63bitr4i 292 1  |-  ( A. x ( ph  \/  ps )  <->  ( ph  \/  A. x ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710
This theorem is referenced by:  19.31  2102  2eu3  2555  axi12  2600
  Copyright terms: Public domain W3C validator