MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.38a Structured version   Visualization version   Unicode version

Theorem 19.38a 1767
Description: Under a non-freeness hypothesis, the implication 19.38 1766 can be strengthened to an equivalence. See also 19.38b 1768. (Contributed by BJ, 3-Nov-2021.)
Assertion
Ref Expression
19.38a  |-  ( F/ x ph  ->  (
( E. x ph  ->  A. x ps )  <->  A. x ( ph  ->  ps ) ) )

Proof of Theorem 19.38a
StepHypRef Expression
1 19.38 1766 . 2  |-  ( ( E. x ph  ->  A. x ps )  ->  A. x ( ph  ->  ps ) )
2 df-nf 1710 . . 3  |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )
3 alim 1738 . . . 4  |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
4 imim1 83 . . . 4  |-  ( ( E. x ph  ->  A. x ph )  -> 
( ( A. x ph  ->  A. x ps )  ->  ( E. x ph  ->  A. x ps )
) )
53, 4syl5 34 . . 3  |-  ( ( E. x ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ps )  -> 
( E. x ph  ->  A. x ps )
) )
62, 5sylbi 207 . 2  |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  A. x ps ) ) )
71, 6impbid2 216 1  |-  ( F/ x ph  ->  (
( E. x ph  ->  A. x ps )  <->  A. x ( ph  ->  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nf 1710
This theorem is referenced by:  19.21t  2073
  Copyright terms: Public domain W3C validator