![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bior2fd | Structured version Visualization version Unicode version |
Description: A wff is equivalent to its threefold disjunction with double falsehood, analogous to biorf 420. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
Ref | Expression |
---|---|
3biorfd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3biorfd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bior2fd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3biorfd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biorf 420 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3biorfd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | 3bior1fd 1438 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | bitrd 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 df-3or 1038 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |