| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3biant1d | Structured version Visualization version Unicode version | ||
| Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 528. (Contributed by Alexander van der Vekens, 26-Sep-2017.) |
| Ref | Expression |
|---|---|
| 3biantd.1 |
|
| Ref | Expression |
|---|---|
| 3biant1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3biantd.1 |
. . 3
| |
| 2 | 1 | biantrurd 529 |
. 2
|
| 3 | 3anass 1042 |
. 2
| |
| 4 | 2, 3 | syl6bbr 278 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: metuel2 22370 itgsubst 23812 clwlkclwwlk 26903 dfgcd3 33170 itg2addnclem2 33462 |
| Copyright terms: Public domain | W3C validator |