Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3impcombi Structured version   Visualization version   Unicode version

Theorem 3impcombi 39044
Description: A 1-hypothesis propositional calculus deduction. (Contributed by Alan Sare, 25-Sep-2017.)
Hypothesis
Ref Expression
3impcombi.1  |-  ( (
ph  /\  ps  /\  ph )  ->  ( ch  <->  th )
)
Assertion
Ref Expression
3impcombi  |-  ( ( ps  /\  ph  /\  ch )  ->  th )

Proof of Theorem 3impcombi
StepHypRef Expression
1 3impcombi.1 . . . . 5  |-  ( (
ph  /\  ps  /\  ph )  ->  ( ch  <->  th )
)
21biimpd 219 . . . 4  |-  ( (
ph  /\  ps  /\  ph )  ->  ( ch  ->  th ) )
323anidm13 1384 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
43ancoms 469 . 2  |-  ( ( ps  /\  ph )  ->  ( ch  ->  th )
)
543impia 1261 1  |-  ( ( ps  /\  ph  /\  ch )  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  isosctrlem1ALT  39170
  Copyright terms: Public domain W3C validator