| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm13.1 |
|
| Ref | Expression |
|---|---|
| 3anidm13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm13.1 |
. . 3
| |
| 2 | 1 | 3com23 1271 |
. 2
|
| 3 | 2 | 3anidm12 1383 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: npncan2 10308 ltsubpos 10520 leaddle0 10543 subge02 10544 halfaddsub 11265 avglt1 11270 hashssdif 13200 pythagtriplem4 15524 pythagtriplem14 15533 lsmss2 18081 grpoidinvlem2 27359 hvpncan3 27899 bcm1n 29554 3anidm12p1 39033 3impcombi 39044 |
| Copyright terms: Public domain | W3C validator |