| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aiffnbandciffatnotciffb | Structured version Visualization version Unicode version | ||
| Description: Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| Ref | Expression |
|---|---|
| aiffnbandciffatnotciffb.1 |
|
| aiffnbandciffatnotciffb.2 |
|
| Ref | Expression |
|---|---|
| aiffnbandciffatnotciffb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aiffnbandciffatnotciffb.2 |
. . 3
| |
| 2 | aiffnbandciffatnotciffb.1 |
. . 3
| |
| 3 | 1, 2 | bitri 264 |
. 2
|
| 4 | xor3 372 |
. 2
| |
| 5 | 3, 4 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: axorbciffatcxorb 41072 |
| Copyright terms: Public domain | W3C validator |