![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitri | Structured version Visualization version Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
Ref | Expression |
---|---|
bitri.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitri.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitri |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitri.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitri.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbb 209 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 2 | sylbbr 226 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 3, 4 | impbii 199 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Copyright terms: Public domain | W3C validator |