MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-mulass Structured version   Visualization version   Unicode version

Axiom ax-mulass 10002
Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by theorem axmulass 9978. Proofs should normally use mulass 10024 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 9934 . . . 4  class  CC
31, 2wcel 1990 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 1990 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 1990 . . 3  wff  C  e.  CC
83, 5, 7w3a 1037 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 cmul 9941 . . . . 5  class  x.
101, 4, 9co 6650 . . . 4  class  ( A  x.  B )
1110, 6, 9co 6650 . . 3  class  ( ( A  x.  B )  x.  C )
124, 6, 9co 6650 . . . 4  class  ( B  x.  C )
131, 12, 9co 6650 . . 3  class  ( A  x.  ( B  x.  C ) )
1411, 13wceq 1483 . 2  wff  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff setvar class
This axiom is referenced by:  mulass  10024
  Copyright terms: Public domain W3C validator