![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-mulass | Structured version Visualization version GIF version |
Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by theorem axmulass 9978. Proofs should normally use mulass 10024 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 9934 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 1990 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 1990 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 1990 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 1037 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | cmul 9941 | . . . . 5 class · | |
10 | 1, 4, 9 | co 6650 | . . . 4 class (𝐴 · 𝐵) |
11 | 10, 6, 9 | co 6650 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
12 | 4, 6, 9 | co 6650 | . . . 4 class (𝐵 · 𝐶) |
13 | 1, 12, 9 | co 6650 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
14 | 11, 13 | wceq 1483 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulass 10024 |
Copyright terms: Public domain | W3C validator |