![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-pr | Structured version Visualization version Unicode version |
Description: The Axiom of Pairing of ZF set theory. It was derived as theorem axpr 4905 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 14-Nov-2006.) |
Ref | Expression |
---|---|
ax-pr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vw |
. . . . . 6
![]() ![]() | |
2 | vx |
. . . . . 6
![]() ![]() | |
3 | 1, 2 | weq 1874 |
. . . . 5
![]() ![]() ![]() ![]() |
4 | vy |
. . . . . 6
![]() ![]() | |
5 | 1, 4 | weq 1874 |
. . . . 5
![]() ![]() ![]() ![]() |
6 | 3, 5 | wo 383 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | vz |
. . . . 5
![]() ![]() | |
8 | 1, 7 | wel 1991 |
. . . 4
![]() ![]() ![]() ![]() |
9 | 6, 8 | wi 4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9, 1 | wal 1481 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10, 7 | wex 1704 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This axiom is referenced by: zfpair2 4907 |
Copyright terms: Public domain | W3C validator |