| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axpr | Structured version Visualization version Unicode version | ||
| Description: Unabbreviated version of
the Axiom of Pairing of ZF set theory, derived
as a theorem from the other axioms.
This theorem should not be referenced by any proof. Instead, use ax-pr 4906 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfpair 4904 |
. . 3
| |
| 2 | 1 | isseti 3209 |
. 2
|
| 3 | dfcleq 2616 |
. . 3
| |
| 4 | vex 3203 |
. . . . . . 7
| |
| 5 | 4 | elpr 4198 |
. . . . . 6
|
| 6 | 5 | bibi2i 327 |
. . . . 5
|
| 7 | biimpr 210 |
. . . . 5
| |
| 8 | 6, 7 | sylbi 207 |
. . . 4
|
| 9 | 8 | alimi 1739 |
. . 3
|
| 10 | 3, 9 | sylbi 207 |
. 2
|
| 11 | 2, 10 | eximii 1764 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |