| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-pre-sup | Structured version Visualization version Unicode version | ||
| Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, justified by theorem axpre-sup 9990. Note: Normally new proofs would use axsup 10113. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| ax-pre-sup |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . . 4
| |
| 2 | cr 9935 |
. . . 4
| |
| 3 | 1, 2 | wss 3574 |
. . 3
|
| 4 | c0 3915 |
. . . 4
| |
| 5 | 1, 4 | wne 2794 |
. . 3
|
| 6 | vy |
. . . . . . 7
| |
| 7 | 6 | cv 1482 |
. . . . . 6
|
| 8 | vx |
. . . . . . 7
| |
| 9 | 8 | cv 1482 |
. . . . . 6
|
| 10 | cltrr 9940 |
. . . . . 6
| |
| 11 | 7, 9, 10 | wbr 4653 |
. . . . 5
|
| 12 | 11, 6, 1 | wral 2912 |
. . . 4
|
| 13 | 12, 8, 2 | wrex 2913 |
. . 3
|
| 14 | 3, 5, 13 | w3a 1037 |
. 2
|
| 15 | 9, 7, 10 | wbr 4653 |
. . . . . 6
|
| 16 | 15 | wn 3 |
. . . . 5
|
| 17 | 16, 6, 1 | wral 2912 |
. . . 4
|
| 18 | vz |
. . . . . . . . 9
| |
| 19 | 18 | cv 1482 |
. . . . . . . 8
|
| 20 | 7, 19, 10 | wbr 4653 |
. . . . . . 7
|
| 21 | 20, 18, 1 | wrex 2913 |
. . . . . 6
|
| 22 | 11, 21 | wi 4 |
. . . . 5
|
| 23 | 22, 6, 2 | wral 2912 |
. . . 4
|
| 24 | 17, 23 | wa 384 |
. . 3
|
| 25 | 24, 8, 2 | wrex 2913 |
. 2
|
| 26 | 14, 25 | wi 4 |
1
|
| Colors of variables: wff setvar class |
| This axiom is referenced by: axsup 10113 |
| Copyright terms: Public domain | W3C validator |