![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-pre-sup | Structured version Visualization version Unicode version |
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, justified by theorem axpre-sup 9990. Note: Normally new proofs would use axsup 10113. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
ax-pre-sup |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . . 4
![]() ![]() | |
2 | cr 9935 |
. . . 4
![]() ![]() | |
3 | 1, 2 | wss 3574 |
. . 3
![]() ![]() ![]() ![]() |
4 | c0 3915 |
. . . 4
![]() ![]() | |
5 | 1, 4 | wne 2794 |
. . 3
![]() ![]() ![]() ![]() |
6 | vy |
. . . . . . 7
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . 6
![]() ![]() |
8 | vx |
. . . . . . 7
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . 6
![]() ![]() |
10 | cltrr 9940 |
. . . . . 6
![]() ![]() | |
11 | 7, 9, 10 | wbr 4653 |
. . . . 5
![]() ![]() ![]() ![]() |
12 | 11, 6, 1 | wral 2912 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12, 8, 2 | wrex 2913 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 3, 5, 13 | w3a 1037 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 9, 7, 10 | wbr 4653 |
. . . . . 6
![]() ![]() ![]() ![]() |
16 | 15 | wn 3 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
17 | 16, 6, 1 | wral 2912 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | vz |
. . . . . . . . 9
![]() ![]() | |
19 | 18 | cv 1482 |
. . . . . . . 8
![]() ![]() |
20 | 7, 19, 10 | wbr 4653 |
. . . . . . 7
![]() ![]() ![]() ![]() |
21 | 20, 18, 1 | wrex 2913 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 11, 21 | wi 4 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22, 6, 2 | wral 2912 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 17, 23 | wa 384 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 24, 8, 2 | wrex 2913 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 14, 25 | wi 4 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This axiom is referenced by: axsup 10113 |
Copyright terms: Public domain | W3C validator |