| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axsup | Structured version Visualization version Unicode version | ||
| Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-sup 10014 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| axsup |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-sup 10014 |
. . . 4
| |
| 2 | 1 | 3expia 1267 |
. . 3
|
| 3 | ssel2 3598 |
. . . . . . . 8
| |
| 4 | ltxrlt 10108 |
. . . . . . . 8
| |
| 5 | 3, 4 | sylan 488 |
. . . . . . 7
|
| 6 | 5 | an32s 846 |
. . . . . 6
|
| 7 | 6 | ralbidva 2985 |
. . . . 5
|
| 8 | 7 | rexbidva 3049 |
. . . 4
|
| 9 | 8 | adantr 481 |
. . 3
|
| 10 | ltxrlt 10108 |
. . . . . . . . . . 11
| |
| 11 | 10 | ancoms 469 |
. . . . . . . . . 10
|
| 12 | 3, 11 | sylan 488 |
. . . . . . . . 9
|
| 13 | 12 | an32s 846 |
. . . . . . . 8
|
| 14 | 13 | notbid 308 |
. . . . . . 7
|
| 15 | 14 | ralbidva 2985 |
. . . . . 6
|
| 16 | 4 | ancoms 469 |
. . . . . . . . 9
|
| 17 | 16 | adantll 750 |
. . . . . . . 8
|
| 18 | ssel2 3598 |
. . . . . . . . . . . 12
| |
| 19 | ltxrlt 10108 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | ancoms 469 |
. . . . . . . . . . . 12
|
| 21 | 18, 20 | sylan 488 |
. . . . . . . . . . 11
|
| 22 | 21 | an32s 846 |
. . . . . . . . . 10
|
| 23 | 22 | rexbidva 3049 |
. . . . . . . . 9
|
| 24 | 23 | adantlr 751 |
. . . . . . . 8
|
| 25 | 17, 24 | imbi12d 334 |
. . . . . . 7
|
| 26 | 25 | ralbidva 2985 |
. . . . . 6
|
| 27 | 15, 26 | anbi12d 747 |
. . . . 5
|
| 28 | 27 | rexbidva 3049 |
. . . 4
|
| 29 | 28 | adantr 481 |
. . 3
|
| 30 | 2, 9, 29 | 3imtr4d 283 |
. 2
|
| 31 | 30 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 |
| This theorem is referenced by: dedekind 10200 sup2 10979 |
| Copyright terms: Public domain | W3C validator |