Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-wl-13v Structured version   Visualization version   Unicode version

Axiom ax-wl-13v 33286
Description: A version of ax13v 2247 with a distinctor instead of a distinct variable expression.

Had we additionally required 
x and  y be distinct, too, this theorem would have been a direct consequence of ax-5 1839. So essentially this theorem states, that a distinct variable condition between set variables can be replaced with a distinctor expression. (Contributed by Wolf Lammen, 23-Jul-2021.)

Assertion
Ref Expression
ax-wl-13v  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Distinct variable groups:    x, z    y, z

Detailed syntax breakdown of Axiom ax-wl-13v
StepHypRef Expression
1 vx . . . . 5  setvar  x
2 vy . . . . 5  setvar  y
31, 2weq 1874 . . . 4  wff  x  =  y
43, 1wal 1481 . . 3  wff  A. x  x  =  y
54wn 3 . 2  wff  -.  A. x  x  =  y
6 vz . . . 4  setvar  z
72, 6weq 1874 . . 3  wff  y  =  z
87, 1wal 1481 . . 3  wff  A. x  y  =  z
97, 8wi 4 . 2  wff  ( y  =  z  ->  A. x  y  =  z )
105, 9wi 4 1  wff  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Colors of variables: wff setvar class
This axiom is referenced by:  wl-ax13lem1  33287
  Copyright terms: Public domain W3C validator