![]() |
Metamath
Proof Explorer Theorem List (p. 333 of 426) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | ||||||||||||||||||||||||
Theorem | icoreval 33201* | Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | icoreelrnab 33202* | Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | isbasisrelowllem1 33203* | Lemma for isbasisrelowl 33206. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | isbasisrelowllem2 33204* | Lemma for isbasisrelowl 33206. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | icoreclin 33205* | The set of closed-below, open-above intervals of reals is closed under finite intersection. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | isbasisrelowl 33206 | The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | icoreunrn 33207 | The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | istoprelowl 33208 | The set of all closed-below, open-above intervals of reals generate a topology on the reals. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | icoreelrn 33209* | A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | iooelexlt 33210* | An element of an open interval is not its smallest element. (Contributed by ML, 2-Aug-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | relowlssretop 33211 | The lower limit topology on the reals is finer than the standard topology. (Contributed by ML, 1-Aug-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | relowlpssretop 33212 | The lower limit topology on the reals is strictly finer than the standard topology. (Contributed by ML, 2-Aug-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | sucneqond 33213 | Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | sucneqoni 33214 | Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | onsucuni3 33215 | If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | 1oequni2o 33216 |
The ordinal number ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | rdgsucuni 33217 | If an ordinal number has a predecessor, the value of the recursive definition generator at that number in terms of its predecessor. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | rdgeqoa 33218 |
If a recursive function with an initial value ![]() ![]() ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | elxp8 33219 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 7201. (Contributed by ML, 19-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Syntax | cfinxp 33220 | Extend the definition of a class to include Cartesian exponentiation. | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Definition | df-finxp 33221* |
Define Cartesian exponentiation on a class.
Note that this definition is limited to finite exponents, since it is
defined using nested ordered pairs. If tuples of infinite length are
needed, or if they might be needed in the future, use df-ixp 7909 or
df-map 7859 instead. The main advantage of this
definition is that it
integrates better with functions and relations. For example if
It's also worth keeping in mind that This definition is technical. Use finxp1o 33229 and finxpsuc 33235 for a more standard recursive experience. (Contributed by ML, 16-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | dffinxpf 33222* | This theorem is the same as the definition df-finxp 33221, except that the large function is replaced by a class variable for brevity. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpeq1 33223 | Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpeq2 33224 | Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | csbfinxpg 33225* | Distribute proper substitution through Cartesian exponentiation. (Contributed by ML, 25-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpreclem1 33226* |
Lemma for ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpreclem2 33227* |
Lemma for ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxp0 33228 | The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxp1o 33229 | The value of Cartesian exponentiation at one. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpreclem3 33230* |
Lemma for ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpreclem4 33231* |
Lemma for ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpreclem5 33232* |
Lemma for ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpreclem6 33233* |
Lemma for ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpsuclem 33234* | Lemma for finxpsuc 33235. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpsuc 33235 | The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxp2o 33236 | The value of Cartesian exponentiation at two. (Contributed by ML, 19-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxp3o 33237 | The value of Cartesian exponentiation at three. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxpnom 33238 | Cartesian exponentiation when the exponent is not a natural number defaults to the empty set. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | finxp00 33239 | Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-section-prop 33240 |
Intuitionistic logic is now developed separately, so we need not first
focus on intuitionally valid axioms ax-1 6 and
ax-2 7
any longer.
Alternatively, I start from Jan Lukasiewicz's axiom system here, i.e. ax-mp 5, ax-luk1 33241, ax-luk2 33242 and ax-luk3 33243. I rather copy this system than use luk-1 1580 to luk-3 1582, since the latter are theorems, while we need axioms here. (Contributed by Wolf Lammen, 23-Feb-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Axiom | ax-luk1 33241 |
1 of 3 axioms for propositional calculus due to Lukasiewicz. Copy of
luk-1 1580 and imim1 83, but introduced as an axiom. It
focuses on a basic
property of a valid implication, namely that the consequent has to be true
whenever the antecedent is. So if ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() A particular result of this strengthening property comes into play if the antecedent holds unconditionally. Then the consequent must hold unconditionally as well. This specialization is the foundational idea behind logical conclusion. Such conclusion is best expressed in so-called immediate versions of this axiom like imim1i 63 or syl 17. Note that these forms are weaker replacements (i.e. just frequent specialization) of the closed form presented here, hence a mere convenience.
We can identify in this axiom up to three antecedents, followed by a
consequent. The number of antecedents is not really fixed; the fewer we
are willing to "see", the more complex the consequent grows. On
the other
side, since In this axiom, up to two antecedents happen to be of complex nature themselves, i.e. are an embedded implication. Logically, this axiom is a compact notion of simpler expressions, which I will later coin implication chains. Herein all antecedents and the consequent appear as simple variables, or their negation. Any propositional expression is equivalent to a set of such chains. This axiom, for example, is dissected into following chains, from which it can be recovered losslessly:
| ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Axiom | ax-luk2 33242 |
2 of 3 axioms for propositional calculus due to Lukasiewicz. Copy of
luk-2 1581 or pm2.18 122, but introduced as an axiom. The core idea
behind
this axiom is, that if something can be implied from both an antecedent,
and separately from its negation, then the antecedent is irrelevant to the
consequent, and can safely be dropped. This is perhaps better seen from
the following slightly extended version (related to pm2.65 184):
| ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Axiom | ax-luk3 33243 |
3 of 3 axioms for propositional calculus due to Lukasiewicz. Copy of
luk-3 1582 and pm2.24 121, but introduced as an axiom.
One might think that the similar pm2.21 120 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ax-3 fails for phi2, phi2 number of statements: 3 always true phi1 phi2 Negation is defined as ----------------------------------------------------------------------
Implication is defined as ----------------------------------------------------------------------
(Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-section-boot 33244 | In this section, I provide the first steps needed for convenient proving. The presented theorems follow no common concept other than being useful in themselves, and apt to rederive ax-1 6, ax-2 7 and ax-3 8. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-imim1i 33245 | Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Copy of imim1i 63 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-syl 33246 | An inference version of the transitive laws for implication luk-1 1580. Copy of syl 17 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-syl5 33247 | A syllogism rule of inference. The first premise is used to replace the second antecedent of the second premise. Copy of syl5 34 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-pm2.18d 33248 | Deduction based on reductio ad absurdum. Copy of pm2.18d 124 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-con4i 33249 | Inference rule. Copy of con4i 113 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-pm2.24i 33250 | Inference rule. Copy of pm2.24i 146 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-a1i 33251 | Inference rule. Copy of a1i 11 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-mpi 33252 | A nested modus ponens inference. Copy of mpi 20 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-imim2i 33253 | Inference adding common antecedents in an implication. Copy of imim2i 16 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-syl6 33254 | A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. Copy of syl6 35 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-ax3 33255 | ax-3 8 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-ax1 33256 | ax-1 6 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-pm2.27 33257 | This theorem, called "Assertion," can be thought of as closed form of modus ponens ax-mp 5. Theorem *2.27 of [WhiteheadRussell] p. 104. Copy of pm2.27 42 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-com12 33258 | Inference that swaps (commutes) antecedents in an implication. Copy of com12 32 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-pm2.21 33259 | From a wff and its negation, anything follows. Theorem *2.21 of [WhiteheadRussell] p. 104. Also called the Duns Scotus law. Copy of pm2.21 120 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-con1i 33260 | A contraposition inference. Copy of con1i 144 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-ja 33261 | Inference joining the antecedents of two premises. Copy of ja 173 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-imim2 33262 | A closed form of syllogism (see syl 17). Theorem *2.05 of [WhiteheadRussell] p. 100. Copy of imim2 58 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-a1d 33263 | Deduction introducing an embedded antecedent. Copy of imim2 58 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-ax2 33264 | ax-2 7 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-id 33265 | Principle of identity. Theorem *2.08 of [WhiteheadRussell] p. 101. Copy of id 22 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-notnotr 33266 |
Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102.
In classical logic (our logic) this is always true. In intuitionistic
logic this is not always true; in intuitionistic logic, when this is true
for some ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-pm2.04 33267 | Swap antecedents. Theorem *2.04 of [WhiteheadRussell] p. 100. This was the third axiom in Frege's logic system, specifically Proposition 8 of [Frege1879] p. 35. Copy of pm2.04 90 with a different proof. (Contributed by Wolf Lammen, 7-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-section-impchain 33268 |
An implication like ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Implication chains play a particular role in logic, as all propositional expressions turn out to be convertible to one or more implication chains, their nodes as simple as a variable, or its negation. So there is good reason to focus on implication chains as a sort of normalized expressions, and build some general theorems around them, with proofs using recursive patterns. This allows for theorems referring to longer and longer implication chains in an automated way. The theorem names in this section contain the text fragment 'impchain' to point out their relevance to implication chains, followed by a number indicating the (minimal) length of the longest chain involved. (Contributed by Wolf Lammen, 6-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-mp-x 33269 | This series of theorems provide a means of exchanging the consequent of an implication chain via a simple implication. In the main part, the theorems ax-mp 5, syl 17, syl6 35, syl8 76 form the beginning of this series. These theorems are replicated here, but with proofs that aim at a recursive scheme, allowing to base a proof on that of the previous one in the series. (Contributed by Wolf Lammen, 17-Nov-2019.) | ||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-mp-0 33270 |
This theorem is the start of a proof recursion scheme where we replace
the consequent of an implication chain. The number '0' in the theorem
name indicates that the modified chain has no antecedents.
This theorem is in fact a copy of ax-mp 5, and is repeated here to emphasize the recursion using similar theorem names. (Contributed by Wolf Lammen, 6-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-mp-1 33271 | This theorem is in fact a copy of wl-syl 33246, and repeated here to demonstrate a recursive proof scheme. The number '1' in the theorem name indicates that a chain of length 1 is modified. (Contributed by Wolf Lammen, 6-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-mp-2 33272 | This theorem is in fact a copy of wl-syl6 33254, and repeated here to demonstrate a recursive proof scheme. The number '2' in the theorem name indicates that a chain of length 2 is modified. (Contributed by Wolf Lammen, 6-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-com-1.x 33273 |
It is often convenient to have the antecedent under focus in first
position, so we can apply immediate theorem forms (as opposed to
deduction, tautology form). This series of theorems swaps the first with
the last antecedent in an implication chain. This kind of swapping is
self-inverse, whence we prefer it over, say, rotating theorems. A
consequent can hide a tail of a longer chain, so theorems of this series
appear as swapping a pair of antecedents with fixed offsets. This form of
swapping antecedents is flexible enough to allow for any permutation of
antecedents in an implication chain.
The first elements of this series correspond to com12 32, com13 88, com14 96 and com15 101 in the main part. The proofs of this series aim at automated proving using a simple recursive scheme. It employs the previous theorem in the series along with a sample from the wl-impchain-mp-x 33269 series developed before. (Contributed by Wolf Lammen, 17-Nov-2019.) | ||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-com-1.1 33274 |
A degenerate form of antecedent swapping. The number '1' in the theorem
name indicates that it handles a chain of length 1.
Since there is just one antecedent in the chain, there is nothing to swap. Non-degenerated forms begin with wl-impchain-com-1.2 33275, for more see there. (Contributed by Wolf Lammen, 7-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-com-1.2 33275 |
This theorem is in fact a copy of wl-com12 33258, and repeated here to
demonstrate a simple proof scheme. The number '2' in the theorem name
indicates that a chain of length 2 is modified.
See wl-impchain-com-1.x 33273 for more information how this proof is generated. (Contributed by Wolf Lammen, 7-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-com-1.3 33276 |
This theorem is in fact a copy of com13 88, and repeated here to
demonstrate a simple proof scheme. The number '3' in the theorem name
indicates that a chain of length 3 is modified.
See wl-impchain-com-1.x 33273 for more information how this proof is generated. (Contributed by Wolf Lammen, 7-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-com-1.4 33277 |
This theorem is in fact a copy of com14 96, and repeated here to
demonstrate a simple proof scheme. The number '4' in the theorem name
indicates that a chain of length 4 is modified.
See wl-impchain-com-1.x 33273 for more information how this proof is generated. (Contributed by Wolf Lammen, 7-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-com-n.m 33278 |
This series of theorems allow swapping any two antecedents in an
implication chain. The theorem names follow a pattern wl-impchain-com-n.m
with integral numbers n < m, that swaps the m-th antecedent with n-th
one
in an implication chain. It is sufficient to restrict the length of the
chain to m, too, since the consequent can be assumed to be the tail right
of the m-th antecedent of any arbitrary sized implication chain. We
further assume n > 1, since the wl-impchain-com-1.x 33273 series already
covers the special case n = 1.
Being able to swap any two antecedents in an implication chain lays the foundation of permuting its antecedents arbitrarily. The proofs of this series aim at automated proofing using a simple scheme. Any instance of this series is a triple step of swapping the first and n-th antecedent, then the first and the m-th, then the first and the n-th antecedent again. Each of these steps is an instance of the wl-impchain-com-1.x 33273 series. (Contributed by Wolf Lammen, 17-Nov-2019.) | ||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-com-2.3 33279 | This theorem is in fact a copy of com23 86. It starts a series of theorems named after wl-impchain-com-n.m 33278. For more information see there. (Contributed by Wolf Lammen, 12-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-com-2.4 33280 | This theorem is in fact a copy of com24 95. It is another instantiation of theorems named after wl-impchain-com-n.m 33278. For more information see there. (Contributed by Wolf Lammen, 17-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-com-3.2.1 33281 | This theorem is in fact a copy of com3r 87. The proof is an example of how to arrive at arbitrary permutations of antecedents, using only swapping theorems. The recursion principle is to first swap the correct antecedent to the position just before the consequent, and then employ a theorem handling an implication chain of length one less to reorder the others. (Contributed by Wolf Lammen, 17-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-a1-x 33282 |
If an implication chain is assumed (hypothesis) or proven (theorem) to
hold, then we may add any extra antecedent to it, without changing its
truth. This is expressed in its simplest form in wl-a1i 33251, that allows
us prepending an arbitrary antecedent to an implication chain. Using our
antecedent swapping theorems described in wl-impchain-com-n.m 33278, we may
then move such a prepended antecedent to any desired location within all
antecedents. The first series of theorems of this kind adds a single
antecedent somewhere to an implication chain. The appended number in the
theorem name indicates its position within all antecedents, 1 denoting the
head position. A second theorem series extends this idea to multiple
additions (TODO).
Adding antecedents to an implication chain usually weakens their universality. The consequent afterwards dependends on more conditions than before, which renders the implication chain less versatile. So you find this proof technique mostly when you adjust a chain to a hypothesis of a rule. A common case are syllogisms merging two implication chains into one. The first elements of the first series correspond to a1i 11, a1d 25 and a1dd 50 in the main part. The proofs of this series aim at automated proving using a simple recursive scheme. It employs the previous theorem in the series along with a sample from the wl-impchain-com-1.x 33273 series developed before. (Contributed by Wolf Lammen, 20-Jun-2020.) | ||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-a1-1 33283 | Inference rule, a copy of a1i 11. Head start of a recursive proof pattern. (Contributed by Wolf Lammen, 20-Jun-2020.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-a1-2 33284 | Inference rule, a copy of a1d 25. First recursive proof based on the previous instance. (Contributed by Wolf Lammen, 20-Jun-2020.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-impchain-a1-3 33285 | Inference rule, a copy of a1dd 50. A recursive proof depending on previous instances, and demonstrating the proof pattern. (Contributed by Wolf Lammen, 20-Jun-2020.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Axiom | ax-wl-13v 33286* |
A version of ax13v 2247 with a distinctor instead of a distinct
variable
expression.
Had we additionally required | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-ax13lem1 33287* |
A version of ax-wl-13v 33286 with one distinct variable restriction
dropped.
For convenience, ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-jarri 33288 | Dropping a nested antecedent. This theorem is one of two reversions of ja 173. Since ja 173 is reversible, a nested (chain of) implication(s) is just a packed notation of two or more theorems/hypotheses with a common consequent. axc5c7 34196 is an instance of this idea. (Contributed by Wolf Lammen, 20-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-jarli 33289 | Dropping a nested consequent. This theorem is one of two reversions of ja 173. Since ja 173 is reversible, one can conclude, that a nested (chain of) implication(s) is just a packed notation of two or more theorems/ hypotheses with a common consequent. axc5c7 34196 is an instance of this idea. (Contributed by Wolf Lammen, 4-Oct-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-mps 33290 | Replacing a nested consequent. A sort of modus ponens in antecedent position. (Contributed by Wolf Lammen, 20-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-syls1 33291 | Replacing a nested consequent. A sort of syllogism in antecedent position. (Contributed by Wolf Lammen, 20-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-syls2 33292 | Replacing a nested antecedent. A sort of syllogism in antecedent position. (Contributed by Wolf Lammen, 20-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-embant 33293 | A true wff can always be added as a nested antecedent to an antecedent. Note: this theorem is intuitionistically valid. (Contributed by Wolf Lammen, 4-Oct-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-orel12 33294 |
In a conjunctive normal form a pair of nodes like
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-cases2-dnf 33295 |
A particular instance of orddi 913 and anddi 914 converting between
disjunctive and conjunctive normal forms, when both ![]() ![]() ![]() | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-dfnan2 33296 | An alternative definition of "nand" based on imnan 438. See df-nan 1448 for the original definition. This theorem allows various shortenings. (Contributed by Wolf Lammen, 26-Jun-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-nancom 33297 | The 'nand' operator commutes. (Contributed by Mario Carneiro, 9-May-2015.) (Revised by Wolf Lammen, 26-Jun-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-nannan 33298 | Lemma for handling nested 'nand's. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Revised by Wolf Lammen, 26-Jun-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-nannot 33299 | Show equivalence between negation and the Nicod version. To derive nic-dfneg 1595, apply nanbi 1454. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Revised by Wolf Lammen, 26-Jun-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||||||||||||||||||||||
Theorem | wl-nanbi1 33300 | Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) (Revised by Wolf Lammen, 27-Jun-2020.) | ||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |