| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axbnd | Structured version Visualization version Unicode version | ||
| Description: Axiom of Bundling
(intuitionistic logic axiom ax-bnd). In classical
logic, this and axi12 2600 are fairly straightforward consequences of
axc9 2302. But in intuitionistic logic, it is not easy
to add the extra
|
| Ref | Expression |
|---|---|
| axbnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnae 2318 |
. . . . . 6
| |
| 2 | nfnae 2318 |
. . . . . 6
| |
| 3 | 1, 2 | nfan 1828 |
. . . . 5
|
| 4 | nfnae 2318 |
. . . . . . 7
| |
| 5 | nfnae 2318 |
. . . . . . 7
| |
| 6 | 4, 5 | nfan 1828 |
. . . . . 6
|
| 7 | axc9 2302 |
. . . . . . 7
| |
| 8 | 7 | imp 445 |
. . . . . 6
|
| 9 | 6, 8 | alrimi 2082 |
. . . . 5
|
| 10 | 3, 9 | alrimi 2082 |
. . . 4
|
| 11 | 10 | ex 450 |
. . 3
|
| 12 | 11 | orrd 393 |
. 2
|
| 13 | 12 | orri 391 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |