| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc11n-16 | Structured version Visualization version Unicode version | ||
| Description: This theorem shows that, given ax-c16 34177, we can derive a version of ax-c11n 34173. However, it is weaker than ax-c11n 34173 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 27-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc11n-16 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c16 34177 |
. . . 4
| |
| 2 | 1 | alrimiv 1855 |
. . 3
|
| 3 | 2 | axc4i-o 34183 |
. 2
|
| 4 | equequ1 1952 |
. . . . . 6
| |
| 5 | 4 | cbvalv 2273 |
. . . . . . 7
|
| 6 | 5 | a1i 11 |
. . . . . 6
|
| 7 | 4, 6 | imbi12d 334 |
. . . . 5
|
| 8 | 7 | albidv 1849 |
. . . 4
|
| 9 | 8 | cbvalv 2273 |
. . 3
|
| 10 | 9 | biimpi 206 |
. 2
|
| 11 | nfa1-o 34200 |
. . . . . . 7
| |
| 12 | 11 | 19.23 2080 |
. . . . . 6
|
| 13 | 12 | albii 1747 |
. . . . 5
|
| 14 | ax6ev 1890 |
. . . . . . . 8
| |
| 15 | pm2.27 42 |
. . . . . . . 8
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . 7
|
| 17 | 16 | alimi 1739 |
. . . . . 6
|
| 18 | equequ2 1953 |
. . . . . . . . 9
| |
| 19 | 18 | spv 2260 |
. . . . . . . 8
|
| 20 | 19 | sps-o 34193 |
. . . . . . 7
|
| 21 | 20 | alcoms 2035 |
. . . . . 6
|
| 22 | 17, 21 | syl 17 |
. . . . 5
|
| 23 | 13, 22 | sylbi 207 |
. . . 4
|
| 24 | 23 | alcoms 2035 |
. . 3
|
| 25 | 24 | axc4i-o 34183 |
. 2
|
| 26 | 3, 10, 25 | 3syl 18 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-c5 34168 ax-c4 34169 ax-c7 34170 ax-c16 34177 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |