Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c4c711toc5 Structured version   Visualization version   Unicode version

Theorem axc5c4c711toc5 38603
Description: Rederivation of sp 2053 from axc5c4c711 38602. Note that ax6 2251 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) Revised to use ax6v 1889 instead of ax6 2251, so that this rederivation requires only ax6v 1889 and propositional calculus. (Revised by BJ, 14-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c4c711toc5  |-  ( A. x ph  ->  ph )

Proof of Theorem axc5c4c711toc5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax6v 1889 . . 3  |-  -.  A. x  -.  x  =  y
2 pm2.21 120 . . . 4  |-  ( -. 
ph  ->  ( ph  ->  A. x ( A. x ph  ->  -.  x  =  y ) ) )
3 ax-1 6 . . . 4  |-  ( (
ph  ->  A. x ( A. x ph  ->  -.  x  =  y ) )  ->  ( A. x A. x  -.  A. x A. x ( A. x ph  ->  -.  x  =  y )  ->  ( ph  ->  A. x ( A. x ph  ->  -.  x  =  y ) ) ) )
4 axc5c4c711 38602 . . . 4  |-  ( ( A. x A. x  -.  A. x A. x
( A. x ph  ->  -.  x  =  y )  ->  ( ph  ->  A. x ( A. x ph  ->  -.  x  =  y ) ) )  ->  ( A. x ph  ->  A. x  -.  x  =  y
) )
52, 3, 43syl 18 . . 3  |-  ( -. 
ph  ->  ( A. x ph  ->  A. x  -.  x  =  y ) )
61, 5mtoi 190 . 2  |-  ( -. 
ph  ->  -.  A. x ph )
76con4i 113 1  |-  ( A. x ph  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481    = wceq 1483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator